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Introduction

The high-surface area of the (sub)micrometer droplets generated by low-flow nanoelectrospray ionization results in the potential
ionization of contaminants present in laboratory air (Volkmer-Engert R.,Schlosser A. ]. Mass Spectrom. 2003; 38: 523-525). Neveu!
and coworkers recently reported an active background ion reduction (ABIRD) “bath gas” system designed to reduce the background
levels using laboratory air (Proceedings of the 56th ASMS Conference, June 1-5, 2008, Denver, Colorado). Here we report on the

implementation of two similar systems for use in combination with both off-line nanospray and on-line nano-LC/MS.

Methods

* Mass Spectrometer: LCQ Deca™ (Thermo Fisher Scientific)
e HPLC Pump: Eksigent nano-LC
¢ Syringe Pump: Harvard Apparatus pump with flow sensor

The bath gas system was implemented on a modified digitally-
controlled nanospray source (Digital PicoView® DPV-150,
New Objective, Inc.) mounted to a conventional 3-D ion
trap (LCQ Deca™, Thermo Scientific Inc.). The gas delivery
outlet (12 mm diameter) was fabricated from Teflon®. The
outlet was positioned approximately 25 mm away from the
MS inlet and at a 45° with respect to the inlet capillary. Two
different air filtration systems were tested. The first system was
driven by a proprietary pressure-fan in combination with a
high-permeability carbon filtration system. The second system
utilized a high quality, dry-air compressor (Jun-Air) that was
connected to a flow control system (0-12 L/min.) with an in-
line carbon-based organic vapor filter (Supelco) intended for
gas chromatography. The flow rate and volume of air delivered
at the bath gas outlet was measured with a velocity sensitive air-
flow meter (Testo Inc.). The air flow at the outlet of the delivery
system could be adjusted from laminar, to sub-turbulent, to
turbulent conditions.

Mobile phase (water, acetonitrile, 0.1% formic acid; Sigma-
Aldrich) was delivered by a gradient nanoflow LC pump
(Eksigent) or by continuous infusion from a syringe pump (250
pL syringe; Hamilton Gas-Tight). Syringe pump flow rate was
measured to within + 20 nL/min. using an in-line flow sensor
(Upchurch Scientific®). The typical flow rate for continuous
infusion was 400 nL/min. A 10 pm ID fritted-tip emitter (PF360-
50-10-N; New Objective, Inc.) was mounted on the source.
High voltage was applied directly to the mobile phase through
a clear elastomer PicoClear™ Conductive Union (PCCU-
360; New Obijective, Inc.). An in-line PEEK™ filter (Upchurch
Scientific, P-770) was used to reduce particulate contamination
of the emitter.
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Left, Digital PicoView Nanospray
Source mounted onto the LCQ Deca;
above, PicoClear Conductive Union
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(A) Summation of ion
current for 371 and
445 m/z molecular
ions spraying 0.1%
formic acid in water.
Bath gas is off for the
first 30 sec., on from
30 sec. to 66 sec.

(B) Bath Gas off. Full
scan mass spectra

for 0.1% formic acid
showing the dominant
background ions at

371 and 445 m/z .

(C) Bath gas on. Full
scan mass spectra
for 0.1% formic acid
with the background
components removed
to baseline level.
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(A) MS/MS of the 371 m/z protonated molecular ion present in
the ambient laboratory air.
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(B) MS/MS of the 371 m/z protonated molecular ion from the
reference compound, decamethylcyclopentasiloxane, introduced
into the outlet stream of the bath gas. Note the identical fragments
at 267.1, 284.8 and 354.9 m/z.
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A) MS/MS of the 445 m/z protonated molecular ion present in
the ambient laboratory air.
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(B] MS/MS of the 445 m/z protonated molecular ion from the
reference compound, dodecamethylcyclohexasiloxane, introduced
into the outlet stream of the bath gas. Note the identical fragments
at 340.9, 358.6 and 428.9 m/z.

482.0
B Gas on o700 L ACN

480.8

377.0 707.8 950.6
57@ 7 5% ACN
460.1
08 5124 1066 10% ACN

337.4

2495 4302 5615 20% ACN
7223
Udlaahdboedd gt | i
4132
sass 30% ACN
338.3
‘ o752 50% ACN
550.7 \
ikl hodalibl
338.3
5507 90% ACN
2(‘)0 40‘0 5(‘30 80‘0 1 0‘00 ‘2‘00 14‘00
miz

(A) Representative fullscan mass spectra for increasing percentage of ACN (0. 1% formic acid); bath gas off. (B] Representative full-scan mass
spectra for increasing percentage of ACN (0.1% formic acid); bath gas on. Note effective removal of 371, 445 m/z background ions. Background
ions at 338, 550, m/z etc. that appear for high % ACN appear to be intrinsic to the mobile phase and not atmospheric contaminants.
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Mobile phase background with analyte (1pM angiontensin, MRFA, bradykinin) present
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(A) Representative fullscan mass spectra for increasing percentage of ACN (0. 1% formic acid); bath gas off. (B] Representative full-scan mass
spectra for increasing percentage of ACN (0.1% formic acid); bath gas on. Note effective removal of 371, 445 m/z background ions. Note the
simplification of full-scan spectra for low percent ACN.
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(A) Comparison of reconstructed base-peak chromatograms
comparing bath gas on with bath gas off. Note that selected ion
current for peptide ions in proximity to the 371 and 445 m/z
background ions is much improved. (B) Full scan mass spectra of
the 379 m/z peptide ion with gas on (top) and off (bottom). (C)
Detail of the base-peak chromatograms from A and summed full
scan spectra. Note the simplification of the mass spectra.

A three-peptide standard (human angiotensin 1, MRFA,
bradykinin; Sigma-Aldrich) was prepared at a concentration of
1 pmol/pL (5 to 50% acetonitrile). All samples contained 0.1%
formicacid. Standards of the proposed polysiloxane contaminants
(decamethylcyclopentasiloxane and dodecamethylcyclohexa-
siloxane) were obtained from Gelest, Inc. A 10 pL aliquot of
each siloxane was deposited onto the interior surface of a 5 mL
glass vial that had been packed with a Kimwipe® tissue. Each
vial was positioned in front of the bath gas outlet in order to
introduce the volatile compound to the nanospray plume.

Results

The commonly observed background ions at m/z 371 and
445 were positively identified as cyclosiloxane compounds
through the use of reference standards. A systematic study of
operational parameters (filter type, gas flow rate, composition,
etc.) was conducted to minimize background ion current
without compromising analyte signal. A reduction in the
background current from siloxane ions was reduced by 100-
fold when using either filtration system. Background levels
are readily reduced to a level suitable for removal of these
ions from the typical data-dependant mass exclusion list. Air
was found to be superior to nitrogen (not shown) for use with
gradient elution LC as air exhibits a higher breakdown voltage
and therefore reduces the chance of corona discharge at the
nanospray emitter.

Conclusions

* The background ions at m/z 371 and 445 are confirmed by
MS/MS to be cyclosiloxane compounds.

e Elimination of these cyclosiloxane compounds in the
atmosphere surrounding the inlet of the mass spectrometer
can be achieved with a low-flow bath gas.

e Either low- or high-permeability carbon filters may be used
to remove cyclosiloxane compounds from laboratory air.

e Compressed air from a conventional laboratory air
compressor can be suitably “scrubbed” for use as a bath gas
by a packed bed carbon filter.

e Background levels are typically reduced by 100-fold (i.e. to
baseline spectrometer noise levels).

¢ Bath gas flow rates that are too high (i.e. turbulent) may
result in the decrease of analyte ion intensity.
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