Rapid Screening and Confirmational Analysis of Residual Pesticides in Agricultural Samples by GC ECD/FPD and GC-MS/MS Matt Lasater, Jim Edwards, Meredith Conoley, Jessie Butler • Thermo Electron Corporation

Purpose: Develop and test an intelligent software to streamline the analysis of pesticides in a seed oil matrix. Methods: An extract of seed oil was spiked with various levels of pesticides. The samples were

Methods: An extract of seed of was spiked with variation levels of pesticides. The samplers were analyzed on a TRACFU FGC Lifting as charamongraph (SGC complexed with a traderel Exterion Capture Detector/Timan Photometric Detector (ECD/PTO) for the samples of chlorinsteal and agranophosphora was submicially able to a laif of agranges to be injected on the Photicia Onas spectramer (MS). An ion trap MS was chosen because of its specier quantitation ability in matrix is the MSMS experiment. A hotics of Thus¹¹ Tigda and analysis of the trade of the trade of the site of the Photic on the the initiation of the CG detectors or to the inlet of that led into the MS, as directed by the Smart Screening scheme program.

Account growtiese program. Results: Of the detecticed staticed, 35 were sufficiently halopensed to be detected at a 1 gp on column load with the ECD. 15 were detectable at 10 gp oxform load using the FPD, and all of the pecification were submitted as to stage 85 dependitment at a 1 gp level. The linear fit ad the data showed excellent correlation constants of gradeer than 0.95. The linear many same strong 1 gp to 10 gp injected on column for the mass spectrometer was 10 gp to 100 gp the FPD. 16 replication were made at the 10 pg/µL level on the PolarsQ. The median precision for the mass spectrometer was 56.

Introduction

Introduction Pesidoles generally fail into two groups. The first is a class of halogenated products, like p.p¹-DDT which has 5 chlorine atoms per melecule, that have a atomg response on the EOD. The second class a set of organophosphores compounds that are based on aexpl-khorinase inhibition. This class is not always halogenated, but it always has a phosphate moley. These compounds are observed selective always halogenated, but it always ha using an FPD with a phosphorous specific photometric filter. The two GC detectors were operated

Methods:

The seed oil extracts were prepared by taking 0.2 g of sample, performing a solvent extraction, then cleaned by gel permeation chromatography (GPC). The resultant extract was reconstituted to 1 mL with iso-octain. This extract was then spiked with the pesticide mix at 1, 10, 100, and 1000 pg)L. All injection so-octane. vere 1.0 µL

Mass Spectrometer

Mass Spectrometer A dagmond value a value specific and a specific specific

Cas Chromatograph A GC method for the separation of 44 pesticides was developed using the tandem ECD/FPD to detect both detorinates and expany/bashours passicides in a single njection. This injection was made on a 10% denethylationare stationary phases course. The over was held a 60°C bit 1.0 mixes followed by a same of or 200°C, which was held for 10 mixes. The reform was held a 60°C bit 1.0 mixes followed by a same of or 200°C, which was held for 10 mixes. The reform was held a 60°C bit 1.0 mixes the set of 0.0 mixes in the or 200°C bit 1.0 mixes in the or 200°C bit 1.0 mixes in the or 200°C bit 1.0 mixes in the origin of 0.0 mixes in the origin or 0.0 mixes in the origin of 0.0 mixes in the origin of 0.0 mixes in the origin or 0.0 mixes in the origin origin

Add sample to GC/MS/MS sequence

Write and run GC/MS/MS sequence

Compound Name	MS Retention Time (min)	Precursor Ion (amu)	Isolation Notch Width (amu)	Q Value	CID Energy (V)	Quantitation Product	GC Detector Retention Time (min)	Functional Molety (Halogenated or Phosphate)
00//P	5.90	185	4	0.225	3	93,109,131	3.41	3oth
sichinenaniania	7.07	105	6	0.225	1	167 169	4.04	Malogenated
80132818	11.00	265		0.225		203 201 205 229 231 000		Pole necoleti
strachioroaniacia	13.51	245		0.225		234 229 233	7.34	Ptalogenated
chorate	13.00	231	4	0.225	1	203.175.185		Phosphate
sigha-BHC	15.33				6	145, 145, 147, 148, 142		Plalogenated
sentachiorpaniacle	15.62	265	6	0.450		237,235,239	50.94	Halogenated
908	15.93	254		0.450	6	249,247,251	10.60	Malogenated
arbufos	16.63	231	- 4	0.45	3	203,175	13.10	
Sazinon	16.78	179	- 4	0.45	45	137,164,96,122		Phosphate
dom	17.00	175			45	148,150,140		Halogenated
profes	17.26	245	4		2	109,137,202	12.93	
ndane	17.70	183			15	145.146.147.148.149	10.41	Malogenated
PCNB	17.80	295			e e	265,263,267		Plalogenated
ceta-BMC	19.75	183			35	145,147,143		Plalogenated
entachlorcaniline	20.50	265	6		e e	228,229,230,265,193,203		Plalogenated
nethyl chlorpyrifos	20.76	205			45	271,273,208,210	16.51	
lefts-BHC	21.15				25	145.146.147.141		Plalogenated
eptachlor	21.33	272			4	237.260		Halogenated
nethyl parathion	21.40	263	4	0.45	••	246,233,216,153	16.62	
nethyl pirimiphos	21.68	290	4	0.45	4	233,262		Phosphate
hioroathalonii	21.75	265	0		2			Halogenated
nalathion	22.38	173	4		2	127,145		Phosphate
entrothion	22.53	277	4		2	250		Phosphate
entachlorothicanisole	23.00	235	0		5	263,261,265		Plalogenated
sidrin	23.07	263			5	228,226,230,191		Malogenated
chlorpytilos	23.10	314			••	205,258,288	18.99	Sch.
enthion	23.25	278	4	0.45	- 4	245,246,263		Phosphate
athyl parathion	23.80	221	*		~	263,274,261		Phosphate
e	25.46				4	263.317.315.335		Malogenated
3,p-006	26.51	245			ĉ	176,211		Plalogenated
rehidshion	26.70	145	4		2	85,58		Phosphate
indosulfan I	27.32	125			45	159cluster		Malogenated
3,p-006	28.20	245			c	176,211		Malogenated
teldrin.	28.58	263	0		ŝ	228cl 191 d		Malogenated
perihane	29.22				•	167,196		Malogenated
ndin fhire	29.55	263	2	0.45	55 45	191.193.228.225		Malogenated Shoanhata
(p-00T	30.00	235			45	165,199,200		Malogenated
3,p-000	30.54	235			45	165,199,200		Malogenated
indosultan II	30.85	125			45	159cluster		Malogenated
L4-DDT	31.66				45	165,199,200		Malogenated
hiodan sultate teftosychior	32.56 33.64	272	5		45	237,235,239		Malogenated

Results

e 0.95 T 0.95 D 1.05 suffate 0.95

				The linearity of response was excellent for a				
	Slank concentration Spiked w		Detected	detectors. The correlation coefficients				
	(legist)	10 polul	on:	exceeded 0.99 for all compounds. The 10				
	13	40	ECO					
200	<10	10	FPD	pg/µL concentration was the lowest sample				
	12	23	ECO	that could be seen on the FPD. As a result.				
22	<1	13	ECD					
λW.	<10	<10	FPD	the calibration curves were run from 10 to				
200	5	17	ECO	1000 pg/uL for this detector. The ECD was				
	4	30	ECD	an order of magnitude more sensitive and				
	<10	24	FPD ECD					
	5	0	000	was able to detect the 1 pg/µL samples.				
	<10	47	EC0	However, as is seen in Figure 5, the				
201	<10	36	FPD					
	<10	30 12	100	response factor of the PolarisQ is				
201	21	11	DCD	significantly higher at this same				
	1	50	000	concentration. As a test of the reliability of				
207		11	000					
	55	71	ECO	the analysis, 18 replicate samples at 10 pg				
	<10	12	FPD	injected on column were run in matrix on the				
	4	6	000					
	21	- 6	ECO	Polaris Q. The average precision was 9.3%.				
	21		ECO	The limits of detection (LOD) for the Polaris				
287	210	26	EPO	is well below the 50 ppb equivalent				
	64	75	ECD					
	<1	11	ECD	concentration in matrix. As has been stated.				
	<10	24	FPD	the LOD was 10 pg/uL for the FPD and 1				
204	<10	21	FPD					
	<10	21	FPD	pg/µL for the ECD. As a measure of the				
205	5	10	ECD	robustness of the analysis on the PolarisQ.				
	42	51	ECD					
201	<10	29	FPD	after all the samples were run, a final				
222	<1	ŝ	ECO	injection of the 100 pa/uL pure standard was				
225	10		ECD	run. The calculated amount was within 20%				
	10	50	ECO					
222	22	11	ECO	of the injected amount for nearly all				
991	<10	25	FPD	compounds. The exceptions were caused by				
200	5	11	ECD ECD					
			000	chromatographic difficulties such as non-				
	<1	10		Gaussian peak shapes. The results are				
200	1	8	DCD	summarized in Tables 2 and 3				
	3	5	ECD ECD	summarized in Tables 2 and 3.				
200	5	<u>.</u>	DCD DCD					

Discussion

By using selective detectors for screening, the likelihood of co-eluting matrix interferents is greatly reduced. The FPD detector is selective to ntration %RSD pg[µl che (nu10) standard greatly reduced. The FPD detector is selection phosphorus containing compounds only. For screening, the detector was able to find levels near 10 pg injected on column. This is an order of magnitude larger than for both the ECD detector and the PolarisQ. The ECD

double the throughout of the screening system

Conclusions

ABLE 3. I

Conclusions A series of prod-Concept experiments have shown that an intelligent sequencing software can use a screening analysis to flag samples for confirmation and quantitation. In this work, a avier of 44 pesiadise were spokel in a see of markin. The samples were screened using antidemic CDPPP does the base detector allowed for the simultaneous screening of halogeneties and organophosphore based peet/obst-halogenetic screening and antional screening of halogenetic screening and confirmed the Shalog On range mass sectorements. The Shalog Output of the screening schedulers. The ideal detector allowers are used to price the samples on either of the two intes on the TRACE GC UIts. In addition, the sampling of the Posisol So significantly righer than that of the screening schedulers. The ideal presenting hance offering method.

Thermo